Documentation
¶
Overview ¶
Package reinforce is an agent implementation of the REINFORCE algorithm.
Index ¶
Constants ¶
This section is empty.
Variables ¶
View Source
var DefaultAgentConfig = &AgentConfig{ Hyperparameters: DefaultHyperparameters, PolicyConfig: DefaultPolicyConfig, Base: agentv1.NewBase("REINFORCE"), }
DefaultAgentConfig is the default config for a dqn agent.
View Source
var DefaultFCLayerBuilder = func(x, y *modelv1.Input) []layer.Config { return []layer.Config{ layer.FC{Input: x.Squeeze()[0], Output: 24}, layer.FC{Input: 24, Output: 24}, layer.FC{Input: 24, Output: y.Squeeze()[0], Activation: layer.Softmax}, } }
DefaultFCLayerBuilder is a default fully connected layer builder.
View Source
var DefaultHyperparameters = &Hyperparameters{
Gamma: 0.99,
}
DefaultHyperparameters are the default hyperparameters.
View Source
var DefaultPolicyConfig = &PolicyConfig{ Optimizer: g.NewAdamSolver(), LayerBuilder: DefaultFCLayerBuilder, Track: true, }
DefaultPolicyConfig are the default hyperparameters for a policy.
Functions ¶
func MakePolicy ¶
MakePolicy makes a model.
Types ¶
type Agent ¶
type Agent struct {
// Base for the agent.
*agentv1.Base
// Hyperparameters for the dqn agent.
*Hyperparameters
// Policy by which the agent acts.
Policy model.Model
// Memory of the agent.
Memory *Memory
// contains filtered or unexported fields
}
Agent is a dqn agent.
func NewAgent ¶
func NewAgent(c *AgentConfig, env *envv1.Env) (*Agent, error)
NewAgent returns a new dqn agent.
type AgentConfig ¶
type AgentConfig struct {
// Base for the agent.
Base *agentv1.Base
// Hyperparameters for the agent.
*Hyperparameters
// PolicyConfig for the agent.
PolicyConfig *PolicyConfig
}
AgentConfig is the config for a dqn agent.
type Hyperparameters ¶
type Hyperparameters struct {
// Gamma is the discount factor (0≤γ≤1). It determines how much importance we want to give to future
// rewards. A high value for the discount factor (close to 1) captures the long-term effective award, whereas,
// a discount factor of 0 makes our agent consider only immediate reward, hence making it greedy.
Gamma float32
}
Hyperparameters for the dqn agent.
type LayerBuilder ¶
LayerBuilder builds layers.
type PolicyConfig ¶
type PolicyConfig struct {
// Optimizer to optimize the weights with regards to the error.
Optimizer g.Solver
// LayerBuilder is a builder of layer.
LayerBuilder LayerBuilder
// Track is whether to track the model.
Track bool
}
PolicyConfig are the hyperparameters for a policy.
Click to show internal directories.
Click to hide internal directories.

