Documentation
¶
Overview ¶
Package inference provides statistical inference and likelihood modeling capabilities for stochadex simulations. It includes probability distributions, likelihood functions, gradient computation, and Bayesian inference utilities for parameter estimation and model validation.
Key Features:
- Probability distribution implementations (Beta, Gamma, Normal, Poisson, etc.)
- Likelihood function evaluation and gradient computation
- Bayesian inference with posterior estimation
- Parameter estimation and optimization support
- Model comparison and validation utilities
Mathematical Background: The package implements various probability distributions and their associated likelihood functions for use in Bayesian inference. Key distributions include:
- Normal distributions for continuous variables
- Poisson distributions for count data
- Gamma distributions for positive continuous variables
- Beta distributions for bounded continuous variables
Usage Patterns:
- Fit models to observed data using maximum likelihood estimation
- Perform Bayesian parameter estimation with prior distributions
- Compare models using likelihood ratios or information criteria
- Validate model assumptions through posterior predictive checks
Index ¶
- func CovarianceMatrixFromParams(params *simulator.Params) *mat.SymDense
- func CovarianceMatrixFromParamsOrPartition(params *simulator.Params, partitionIndex int, ...) *mat.SymDense
- func CovarianceMatrixFromPartition(params *simulator.Params, partitionIndex int, ...) *mat.SymDense
- func CovarianceMatrixVarianceFromParams(params *simulator.Params) *mat.SymDense
- func CovarianceMatrixVarianceFromPartition(params *simulator.Params, partitionIndex int, ...) *mat.SymDense
- func MeanFromParams(params *simulator.Params) *mat.VecDense
- func MeanFromParamsOrPartition(params *simulator.Params, partitionIndex int, ...) *mat.VecDense
- func MeanFromPartition(params *simulator.Params, partitionIndex int, ...) *mat.VecDense
- func MeanGradientFunc(params *simulator.Params, likeMeanGrad []float64) []float64
- func MeanTransform(params *simulator.Params, values mat.Vector) mat.Vector
- func VarianceFromParams(params *simulator.Params) *mat.VecDense
- func VarianceFromParamsOrPartition(params *simulator.Params, partitionIndex int, ...) *mat.VecDense
- func VarianceFromPartition(params *simulator.Params, partitionIndex int, ...) *mat.VecDense
- func VarianceTransform(params *simulator.Params, values mat.Vector) mat.Vector
- type BetaLikelihoodDistribution
- func (b *BetaLikelihoodDistribution) EvaluateLogLike(data []float64) float64
- func (b *BetaLikelihoodDistribution) EvaluateLogLikeMeanGrad(data []float64) []float64
- func (b *BetaLikelihoodDistribution) GenerateNewSamples() []float64
- func (b *BetaLikelihoodDistribution) SetParams(params *simulator.Params, partitionIndex int, ...)
- func (b *BetaLikelihoodDistribution) SetSeed(partitionIndex int, settings *simulator.Settings)
- type DataComparisonGradientIteration
- func (d *DataComparisonGradientIteration) Configure(partitionIndex int, settings *simulator.Settings)
- func (d *DataComparisonGradientIteration) Iterate(params *simulator.Params, partitionIndex int, ...) []float64
- func (d *DataComparisonGradientIteration) UpdateMemory(params *simulator.Params, update general.StateMemoryUpdate)
- type DataComparisonIteration
- type DataGenerationIteration
- type GammaLikelihoodDistribution
- func (g *GammaLikelihoodDistribution) EvaluateLogLike(data []float64) float64
- func (g *GammaLikelihoodDistribution) EvaluateLogLikeMeanGrad(data []float64) []float64
- func (g *GammaLikelihoodDistribution) GenerateNewSamples() []float64
- func (g *GammaLikelihoodDistribution) SetParams(params *simulator.Params, partitionIndex int, ...)
- func (g *GammaLikelihoodDistribution) SetSeed(partitionIndex int, settings *simulator.Settings)
- type LikelihoodDistribution
- type LikelihoodDistributionWithGradient
- type NegativeBinomialLikelihoodDistribution
- func (n *NegativeBinomialLikelihoodDistribution) EvaluateLogLike(data []float64) float64
- func (n *NegativeBinomialLikelihoodDistribution) EvaluateLogLikeMeanGrad(data []float64) []float64
- func (n *NegativeBinomialLikelihoodDistribution) GenerateNewSamples() []float64
- func (n *NegativeBinomialLikelihoodDistribution) SetParams(params *simulator.Params, partitionIndex int, ...)
- func (n *NegativeBinomialLikelihoodDistribution) SetSeed(partitionIndex int, settings *simulator.Settings)
- type NormalLikelihoodDistribution
- func (n *NormalLikelihoodDistribution) EvaluateLogLike(data []float64) float64
- func (n *NormalLikelihoodDistribution) EvaluateLogLikeMeanGrad(data []float64) []float64
- func (n *NormalLikelihoodDistribution) GenerateNewSamples() []float64
- func (n *NormalLikelihoodDistribution) SetParams(params *simulator.Params, partitionIndex int, ...)
- func (n *NormalLikelihoodDistribution) SetSeed(partitionIndex int, settings *simulator.Settings)
- type PoissonLikelihoodDistribution
- func (p *PoissonLikelihoodDistribution) EvaluateLogLike(data []float64) float64
- func (p *PoissonLikelihoodDistribution) EvaluateLogLikeMeanGrad(data []float64) []float64
- func (p *PoissonLikelihoodDistribution) GenerateNewSamples() []float64
- func (p *PoissonLikelihoodDistribution) SetParams(params *simulator.Params, partitionIndex int, ...)
- func (p *PoissonLikelihoodDistribution) SetSeed(partitionIndex int, settings *simulator.Settings)
- type PosteriorCovarianceIteration
- type PosteriorLogNormalisationIteration
- type PosteriorMeanIteration
- type TLikelihoodDistribution
- func (t *TLikelihoodDistribution) EvaluateLogLike(data []float64) float64
- func (t *TLikelihoodDistribution) EvaluateLogLikeMeanGrad(data []float64) []float64
- func (t *TLikelihoodDistribution) GenerateNewSamples() []float64
- func (t *TLikelihoodDistribution) SetParams(params *simulator.Params, partitionIndex int, ...)
- func (t *TLikelihoodDistribution) SetSeed(partitionIndex int, settings *simulator.Settings)
- type WishartLikelihoodDistribution
- func (w *WishartLikelihoodDistribution) EvaluateLogLike(data []float64) float64
- func (w *WishartLikelihoodDistribution) EvaluateLogLikeMeanGrad(data []float64) []float64
- func (w *WishartLikelihoodDistribution) GenerateNewSamples() []float64
- func (w *WishartLikelihoodDistribution) SetParams(params *simulator.Params, partitionIndex int, ...)
- func (w *WishartLikelihoodDistribution) SetSeed(partitionIndex int, settings *simulator.Settings)
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func CovarianceMatrixFromParams ¶
CovarianceMatrixFromParams retrieves the covariance matrix from params.
func CovarianceMatrixFromParamsOrPartition ¶
func CovarianceMatrixFromParamsOrPartition( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, ) *mat.SymDense
CovarianceMatrixFromParamsOrPartition retrieves the covariance matrix from params or indexed partition value, depending on which is set.
func CovarianceMatrixFromPartition ¶
func CovarianceMatrixFromPartition( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, ) *mat.SymDense
CovarianceMatrixFromPartition retrieves the covariance matrix from an indexed partition value.
func CovarianceMatrixVarianceFromParams ¶
CovarianceMatrixVarianceFromParams retrieves the covariance matrix from variance params.
func CovarianceMatrixVarianceFromPartition ¶
func CovarianceMatrixVarianceFromPartition( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, ) *mat.SymDense
CovarianceMatrixVarianceFromPartition retrieves the covariance matrix from an indexed partition value for the variance.
func MeanFromParams ¶
MeanFromParams retrieves the mean from params.
func MeanFromParamsOrPartition ¶
func MeanFromParamsOrPartition( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, ) *mat.VecDense
MeanFromParamsOrPartition retrieves the mean from params or indexed partition value, depending on which is set.
func MeanFromPartition ¶
func MeanFromPartition( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, ) *mat.VecDense
MeanFromPartition retrieves the mean from an indexed partition value.
func MeanGradientFunc ¶
MeanGradientFunc computes the gradient with respect to the mean directly.
func MeanTransform ¶
MeanTransform returns the values needed to compute the mean.
func VarianceFromParams ¶
VarianceFromParams retrieves the variance from params.
func VarianceFromParamsOrPartition ¶
func VarianceFromParamsOrPartition( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, ) *mat.VecDense
VarianceFromParamsOrPartition retrieves the variance from params or indexed partition value, depending on which is set.
func VarianceFromPartition ¶
func VarianceFromPartition( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, ) *mat.VecDense
VarianceFromPartition retrieves the variance from from an indexed partition value.
Types ¶
type BetaLikelihoodDistribution ¶
type BetaLikelihoodDistribution struct {
Src rand.Source
// contains filtered or unexported fields
}
BetaLikelihoodDistribution implements a Beta distribution likelihood model for bounded continuous data analysis and parameter estimation.
The Beta distribution is particularly useful for modeling data that is bounded between 0 and 1, such as proportions, probabilities, rates, and normalized measurements. It provides flexible shape modeling through its two shape parameters α (alpha) and β (beta).
Mathematical Background: The Beta distribution Beta(α, β) has probability density function:
f(x | α, β) = x^(α-1) * (1-x)^(β-1) / B(α, β)
where B(α, β) is the Beta function, and x ∈ [0, 1].
Key Properties:
- Support: x ∈ [0, 1] (bounded continuous)
- Shape parameters: α > 0, β > 0 (both must be positive)
- Mean: E[X] = α / (α + β)
- Variance: Var[X] = (α * β) / ((α + β)² * (α + β + 1))
- Special cases:
- α = β = 1: Uniform distribution on [0, 1]
- α = 1, β = 1: Uniform distribution
- α > 1, β > 1: Bell-shaped distribution
- α < 1, β < 1: U-shaped distribution
Applications:
- Proportion modeling: Success rates, conversion rates, market shares
- Probability estimation: Bayesian inference with Beta priors
- Quality control: Defect rates, pass/fail proportions
- Financial modeling: Recovery rates, default probabilities
- Machine learning: Classification confidence scores
Parameter Configuration: The distribution can be configured in two ways:
- Direct parameters: Provide "alpha" and "beta" parameters directly
- Mean-variance: Provide "mean" and "variance" parameters for automatic conversion
Example:
dist := &BetaLikelihoodDistribution{}
dist.SetSeed(0, settings)
// Configure with mean=0.3, variance=0.05
dist.SetParams(params, partitionIndex, stateHistories, timestepsHistory)
// Evaluate likelihood of observed proportions
logLike := dist.EvaluateLogLike([]float64{0.25, 0.35, 0.28})
Performance:
- O(d) time complexity where d is the data dimension
- Memory usage: O(d) for parameter storage
- Efficient for moderate dimensions (< 1000)
func (*BetaLikelihoodDistribution) EvaluateLogLike ¶
func (b *BetaLikelihoodDistribution) EvaluateLogLike( data []float64, ) float64
func (*BetaLikelihoodDistribution) EvaluateLogLikeMeanGrad ¶
func (b *BetaLikelihoodDistribution) EvaluateLogLikeMeanGrad( data []float64, ) []float64
func (*BetaLikelihoodDistribution) GenerateNewSamples ¶
func (b *BetaLikelihoodDistribution) GenerateNewSamples() []float64
func (*BetaLikelihoodDistribution) SetParams ¶
func (b *BetaLikelihoodDistribution) SetParams( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, timestepsHistory *simulator.CumulativeTimestepsHistory, )
type DataComparisonGradientIteration ¶
type DataComparisonGradientIteration struct {
Likelihood LikelihoodDistributionWithGradient
GradientFunc func(
params *simulator.Params,
likeMeanGrad []float64,
) []float64
Batch *simulator.StateHistory
}
DataComparisonGradientIteration allows for any log-likelihood gradient to be used in computing the overall comparison distribution gradient.
func (*DataComparisonGradientIteration) Configure ¶
func (d *DataComparisonGradientIteration) Configure( partitionIndex int, settings *simulator.Settings, )
func (*DataComparisonGradientIteration) Iterate ¶
func (d *DataComparisonGradientIteration) Iterate( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, timestepsHistory *simulator.CumulativeTimestepsHistory, ) []float64
func (*DataComparisonGradientIteration) UpdateMemory ¶
func (d *DataComparisonGradientIteration) UpdateMemory( params *simulator.Params, update general.StateMemoryUpdate, )
type DataComparisonIteration ¶
type DataComparisonIteration struct {
Likelihood LikelihoodDistribution
// contains filtered or unexported fields
}
DataComparisonIteration allows for any log-likelihood to be used as a comparison distribution between data values, a mean vector and covariance matrix.
func (*DataComparisonIteration) Configure ¶
func (d *DataComparisonIteration) Configure( partitionIndex int, settings *simulator.Settings, )
func (*DataComparisonIteration) Iterate ¶
func (d *DataComparisonIteration) Iterate( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, timestepsHistory *simulator.CumulativeTimestepsHistory, ) []float64
type DataGenerationIteration ¶
type DataGenerationIteration struct {
Likelihood LikelihoodDistribution
// contains filtered or unexported fields
}
DataGenerationIteration allows for any likelihood to be used as a data generation distribution based on a mean and covariance matrix.
func (*DataGenerationIteration) Configure ¶
func (d *DataGenerationIteration) Configure( partitionIndex int, settings *simulator.Settings, )
func (*DataGenerationIteration) Iterate ¶
func (d *DataGenerationIteration) Iterate( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, timestepsHistory *simulator.CumulativeTimestepsHistory, ) []float64
type GammaLikelihoodDistribution ¶
type GammaLikelihoodDistribution struct {
Src rand.Source
// contains filtered or unexported fields
}
GammaLikelihoodDistribution assumes the real data are well described by a gamma distribution, given the input mean and variance.
func (*GammaLikelihoodDistribution) EvaluateLogLike ¶
func (g *GammaLikelihoodDistribution) EvaluateLogLike(data []float64) float64
func (*GammaLikelihoodDistribution) EvaluateLogLikeMeanGrad ¶
func (g *GammaLikelihoodDistribution) EvaluateLogLikeMeanGrad( data []float64, ) []float64
func (*GammaLikelihoodDistribution) GenerateNewSamples ¶
func (g *GammaLikelihoodDistribution) GenerateNewSamples() []float64
func (*GammaLikelihoodDistribution) SetParams ¶
func (g *GammaLikelihoodDistribution) SetParams( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, timestepsHistory *simulator.CumulativeTimestepsHistory, )
type LikelihoodDistribution ¶
type LikelihoodDistribution interface {
SetSeed(partitionIndex int, settings *simulator.Settings)
SetParams(
params *simulator.Params,
partitionIndex int,
stateHistories []*simulator.StateHistory,
timestepsHistory *simulator.CumulativeTimestepsHistory,
)
EvaluateLogLike(data []float64) float64
GenerateNewSamples() []float64
}
LikelihoodDistribution defines a likelihood model over observed data for statistical inference and parameter estimation.
This interface represents a probability distribution that can evaluate the likelihood of observed data given parameters and generate new samples from the distribution. It serves as the foundation for Bayesian inference, parameter estimation, and model validation in stochadex simulations.
Mathematical Concept: A likelihood distribution represents the probability model p(data | parameters), where the likelihood function measures how well the model explains observed data given specific parameter values. This is fundamental to:
- Maximum likelihood estimation: θ̂ = argmax_θ p(data | θ)
- Bayesian inference: p(θ | data) ∝ p(data | θ) × p(θ)
- Model comparison and selection
- Parameter uncertainty quantification
Interface Methods:
- SetSeed: Initialize random number generator state for reproducible sampling
- SetParams: Configure distribution parameters from simulation context
- EvaluateLogLike: Compute log-likelihood log p(data | params) for given data
- GenerateNewSamples: Draw new samples from the current parameter configuration
Implementation Requirements:
- SetSeed must be called before any other methods
- SetParams must be called before EvaluateLogLike or GenerateNewSamples
- EvaluateLogLike should return log-likelihood (not raw likelihood) for numerical stability
- GenerateNewSamples should return samples consistent with current parameters
Example Usage:
dist := &BetaLikelihoodDistribution{}
dist.SetSeed(0, settings)
dist.SetParams(params, partitionIndex, stateHistories, timestepsHistory)
// Evaluate likelihood of observed data
logLike := dist.EvaluateLogLike(observedData)
// Generate new samples for validation
newSamples := dist.GenerateNewSamples()
Related Types:
- See LikelihoodDistributionWithGradient for gradient-based optimization
- See BetaLikelihoodDistribution for beta distribution implementation
- See NormalLikelihoodDistribution for normal distribution implementation
type LikelihoodDistributionWithGradient ¶
type LikelihoodDistributionWithGradient interface {
LikelihoodDistribution
EvaluateLogLikeMeanGrad(data []float64) []float64
}
LikelihoodDistributionWithGradient extends LikelihoodDistribution with a mean gradient for optimisation.
type NegativeBinomialLikelihoodDistribution ¶
type NegativeBinomialLikelihoodDistribution struct {
Src rand.Source
// contains filtered or unexported fields
}
NegativeBinomialLikelihoodDistribution assumes the real data are well described by a negative binomial distribution, given the input mean and variance.
func (*NegativeBinomialLikelihoodDistribution) EvaluateLogLike ¶
func (n *NegativeBinomialLikelihoodDistribution) EvaluateLogLike( data []float64, ) float64
func (*NegativeBinomialLikelihoodDistribution) EvaluateLogLikeMeanGrad ¶
func (n *NegativeBinomialLikelihoodDistribution) EvaluateLogLikeMeanGrad( data []float64, ) []float64
func (*NegativeBinomialLikelihoodDistribution) GenerateNewSamples ¶
func (n *NegativeBinomialLikelihoodDistribution) GenerateNewSamples() []float64
func (*NegativeBinomialLikelihoodDistribution) SetParams ¶
func (n *NegativeBinomialLikelihoodDistribution) SetParams( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, timestepsHistory *simulator.CumulativeTimestepsHistory, )
type NormalLikelihoodDistribution ¶
type NormalLikelihoodDistribution struct {
Src rand.Source
// contains filtered or unexported fields
}
NormalLikelihoodDistribution models data with a multivariate normal.
Usage hints:
- Provide mean/covariance via params or upstream partition outputs.
- Optional: "default_covariance" used if provided covariance is not PD.
- GenerateNewSamples draws from the current parameterised distribution.
func (*NormalLikelihoodDistribution) EvaluateLogLike ¶
func (n *NormalLikelihoodDistribution) EvaluateLogLike(data []float64) float64
func (*NormalLikelihoodDistribution) EvaluateLogLikeMeanGrad ¶
func (n *NormalLikelihoodDistribution) EvaluateLogLikeMeanGrad( data []float64, ) []float64
func (*NormalLikelihoodDistribution) GenerateNewSamples ¶
func (n *NormalLikelihoodDistribution) GenerateNewSamples() []float64
func (*NormalLikelihoodDistribution) SetParams ¶
func (n *NormalLikelihoodDistribution) SetParams( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, timestepsHistory *simulator.CumulativeTimestepsHistory, )
type PoissonLikelihoodDistribution ¶
type PoissonLikelihoodDistribution struct {
Src rand.Source
// contains filtered or unexported fields
}
PoissonLikelihoodDistribution models count data with a Poisson distribution.
Usage hints:
- Provide mean via params or upstream partition outputs.
- GenerateNewSamples draws iid Poisson variates per dimension.
func (*PoissonLikelihoodDistribution) EvaluateLogLike ¶
func (p *PoissonLikelihoodDistribution) EvaluateLogLike(data []float64) float64
func (*PoissonLikelihoodDistribution) EvaluateLogLikeMeanGrad ¶
func (p *PoissonLikelihoodDistribution) EvaluateLogLikeMeanGrad( data []float64, ) []float64
func (*PoissonLikelihoodDistribution) GenerateNewSamples ¶
func (p *PoissonLikelihoodDistribution) GenerateNewSamples() []float64
func (*PoissonLikelihoodDistribution) SetParams ¶
func (p *PoissonLikelihoodDistribution) SetParams( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, timestepsHistory *simulator.CumulativeTimestepsHistory, )
type PosteriorCovarianceIteration ¶
type PosteriorCovarianceIteration struct {
}
PosteriorCovarianceIteration updates an estimate of the covariance matrix of the posterior distribution over params using log-likelihood and param values given in the state history of other partitions, and a mean vector.
func (*PosteriorCovarianceIteration) Configure ¶
func (p *PosteriorCovarianceIteration) Configure( partitionIndex int, settings *simulator.Settings, )
func (*PosteriorCovarianceIteration) Iterate ¶
func (p *PosteriorCovarianceIteration) Iterate( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, timestepsHistory *simulator.CumulativeTimestepsHistory, ) []float64
type PosteriorLogNormalisationIteration ¶
type PosteriorLogNormalisationIteration struct {
}
PosteriorLogNormalisationIteration updates the cumulative normalisation of the posterior distribution over params using log-likelihood values given in the state history of other partitions as well as a specified past discounting factor.
func (*PosteriorLogNormalisationIteration) Configure ¶
func (p *PosteriorLogNormalisationIteration) Configure( partitionIndex int, settings *simulator.Settings, )
func (*PosteriorLogNormalisationIteration) Iterate ¶
func (p *PosteriorLogNormalisationIteration) Iterate( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, timestepsHistory *simulator.CumulativeTimestepsHistory, ) []float64
type PosteriorMeanIteration ¶
type PosteriorMeanIteration struct {
Transform func(
params *simulator.Params,
values mat.Vector,
) mat.Vector
}
PosteriorMeanIteration updates an estimate of the mean of the posterior distribution over params using log-likelihood and param values given in the state history of other partitions.
func (*PosteriorMeanIteration) Configure ¶
func (p *PosteriorMeanIteration) Configure( partitionIndex int, settings *simulator.Settings, )
func (*PosteriorMeanIteration) Iterate ¶
func (p *PosteriorMeanIteration) Iterate( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, timestepsHistory *simulator.CumulativeTimestepsHistory, ) []float64
type TLikelihoodDistribution ¶
TLikelihoodDistribution assumes the real data are well described by a Student's t-distribution, given the input degrees of freedom, mean and covariance matrix.
func (*TLikelihoodDistribution) EvaluateLogLike ¶
func (t *TLikelihoodDistribution) EvaluateLogLike(data []float64) float64
func (*TLikelihoodDistribution) EvaluateLogLikeMeanGrad ¶
func (t *TLikelihoodDistribution) EvaluateLogLikeMeanGrad( data []float64, ) []float64
func (*TLikelihoodDistribution) GenerateNewSamples ¶
func (t *TLikelihoodDistribution) GenerateNewSamples() []float64
func (*TLikelihoodDistribution) SetParams ¶
func (t *TLikelihoodDistribution) SetParams( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, timestepsHistory *simulator.CumulativeTimestepsHistory, )
type WishartLikelihoodDistribution ¶
type WishartLikelihoodDistribution struct {
Src rand.Source
// contains filtered or unexported fields
}
WishartLikelihoodDistribution assumes the real data are well described by a Wishart distribution, given the input degrees of freedom and scale matrix.
func (*WishartLikelihoodDistribution) EvaluateLogLike ¶
func (w *WishartLikelihoodDistribution) EvaluateLogLike(data []float64) float64
func (*WishartLikelihoodDistribution) EvaluateLogLikeMeanGrad ¶
func (w *WishartLikelihoodDistribution) EvaluateLogLikeMeanGrad( data []float64, ) []float64
func (*WishartLikelihoodDistribution) GenerateNewSamples ¶
func (w *WishartLikelihoodDistribution) GenerateNewSamples() []float64
func (*WishartLikelihoodDistribution) SetParams ¶
func (w *WishartLikelihoodDistribution) SetParams( params *simulator.Params, partitionIndex int, stateHistories []*simulator.StateHistory, timestepsHistory *simulator.CumulativeTimestepsHistory, )