analysis

package
v0.0.0-...-61698a3 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Feb 8, 2026 License: MIT Imports: 20 Imported by: 0

Documentation

Overview

Package analysis provides data analysis and aggregation utilities for simulation results. It includes functions for computing statistical measures, working with CSV data, creating dataframes, and performing grouped aggregations over time series data.

Key Features:

  • Statistical aggregation functions (mean, variance, covariance)
  • CSV data import/export capabilities
  • DataFrame integration for data manipulation
  • Grouped aggregations with customizable kernels
  • PostgreSQL integration for data storage
  • Log file parsing and analysis

Usage Patterns:

  • Load simulation data from CSV files
  • Compute rolling statistics with time-weighted kernels
  • Export results to various formats
  • Perform likelihood analysis and inference

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

func AddPartitionsToStateTimeStorage

func AddPartitionsToStateTimeStorage(
	storage *simulator.StateTimeStorage,
	partitions []*simulator.PartitionConfig,
	windowSizeByPartition map[string]int,
) *simulator.StateTimeStorage

AddPartitionsToStateTimeStorage extends the state time storage with newly generated values from the specified partitions.

func GetDataFrameFromPartition

func GetDataFrameFromPartition(
	storage *simulator.StateTimeStorage,
	partitionName string,
) dataframe.DataFrame

GetDataFrameFromPartition converts simulation partition data into a Gota DataFrame for convenient data manipulation and analysis.

This function extracts time series data from a simulation partition and converts it into a structured DataFrame format. The resulting DataFrame has a "time" column followed by columns for each state dimension, making it easy to perform data analysis, visualization, and export operations.

DataFrame Structure:

  • Column 0: "time" - Contains the time axis values
  • Column 1+: State dimension columns labeled by their integer indices (0, 1, 2, ...)

Parameters:

  • storage: StateTimeStorage containing the simulation data
  • partitionName: Name of the partition to extract data from

Returns:

  • dataframe.DataFrame: Gota DataFrame with time and state columns

Example:

// Extract price data from simulation storage
df := GetDataFrameFromPartition(storage, "prices")

// Access time column
timeCol := df.Col("time")

// Access state columns
price1Col := df.Col("0") // First price dimension
price2Col := df.Col("1") // Second price dimension

// Perform analysis
meanPrice1 := price1Col.Mean()
maxPrice2 := price2Col.Max()

Use Cases:

  • Data visualization and plotting
  • Statistical analysis and computation
  • Data export to various formats (CSV, JSON, etc.)
  • Integration with data analysis tools
  • Time series analysis and forecasting

Performance:

  • O(n * m) time complexity where n is number of samples, m is state dimensions
  • Memory usage: O(n * m) for the resulting DataFrame
  • Efficient for moderate-sized datasets (< 1M samples)

Error Handling:

  • Panics if partition name is not found in storage
  • Provides helpful error messages with available partition names

func NewEvolutionStrategyOptimisationPartitions

func NewEvolutionStrategyOptimisationPartitions(
	applied AppliedEvolutionStrategyOptimisation,
	storage *simulator.StateTimeStorage,
) []*simulator.PartitionConfig

NewEvolutionStrategyOptimisationPartitions creates a set of PartitionConfigs for an online evolution strategies optimisation process. It builds:

  1. A sampler drawing from N(mean, covariance)
  2. An embedded simulation running user partitions with discounted reward
  3. A sorted collection ranking samples by return
  4. A weighted mean update from the top-ranked samples
  5. A weighted covariance update around the mean

func NewGroupedAggregationPartition

func NewGroupedAggregationPartition(
	aggregation func(
		defaultValues []float64,
		outputIndexByGroup map[string]int,
		groupings map[string][]float64,
		weightings map[string][]float64,
	) []float64,
	applied AppliedAggregation,
	storage *GroupedStateTimeStorage,
) *simulator.PartitionConfig

NewGroupedAggregationPartition creates a partition that performs grouped aggregations over historical state values with customizable binning.

This function creates a partition that aggregates data by grouping values into bins and applying custom aggregation functions within each group. It's particularly useful for computing statistics over value ranges or categorical data.

Mathematical Concept: Grouped aggregations compute statistics within value bins:

G_i(t) = aggregate({X(s) : X(s) ∈ bin_i, s ≤ t})

where bin_i represents a value range or category, and aggregate is the user-provided function (e.g., mean, sum, count).

Parameters:

  • aggregation: Function that computes aggregated values from grouped data. Input parameters:
  • defaultValues: Fill values for each group when no data is available
  • outputIndexByGroup: Maps group names to output vector indices
  • groupings: Maps group names to their historical values
  • weightings: Maps group names to their time-based weights Output: []float64 aggregated results ordered by accepted value groups
  • applied: AppliedAggregation configuration specifying source data and kernel
  • storage: GroupedStateTimeStorage containing group definitions and binning rules

Returns:

  • *PartitionConfig: Configured partition ready for simulation

Example:

// Aggregate price data by volatility bins
config := NewGroupedAggregationPartition(
    func(defaults, indices, groups, weights map[string][]float64) []float64 {
        results := make([]float64, len(indices))
        for group, idx := range indices {
            values := groups[group]
            w := weights[group]
            // Compute weighted mean
            sum := 0.0
            totalWeight := 0.0
            for i, v := range values {
                sum += v * w[i]
                totalWeight += w[i]
            }
            if totalWeight > 0 {
                results[idx] = sum / totalWeight
            } else {
                results[idx] = defaults[idx]
            }
        }
        return results
    },
    AppliedAggregation{
        Name: "volatility_aggregates",
        Data: DataRef{PartitionName: "prices"},
        Kernel: &kernels.ExponentialIntegrationKernel{},
        DefaultValue: 0.0,
    },
    volatilityStorage,
)

Performance Notes:

  • O(n * m) time complexity where n is history depth, m is number of groups
  • Memory usage scales with group count and history depth
  • Efficient for moderate numbers of groups (< 1000)

func NewLikelihoodComparisonPartition

func NewLikelihoodComparisonPartition(
	applied AppliedLikelihoodComparison,
	storage *simulator.StateTimeStorage,
) *simulator.PartitionConfig

NewLikelihoodComparisonPartition builds a PartitionConfig embedding an inner windowed simulation to evaluate the likelihood over a rolling window, producing a per-step comparison score.

func NewLikelihoodMeanFunctionFitPartition

func NewLikelihoodMeanFunctionFitPartition(
	applied AppliedLikelihoodMeanFunctionFit,
	storage *simulator.StateTimeStorage,
) *simulator.PartitionConfig

NewLikelihoodMeanFunctionFitPartition builds a PartitionConfig embedding an inner simulation that runs gradient descent to fit the likelihood mean to the referenced data window.

func NewLinePlotFromDataFrame

func NewLinePlotFromDataFrame(
	df *dataframe.DataFrame,
	xAxis string,
	yAxis string,
	groupBy ...string,
) *charts.Line

NewLinePlotFromDataFrame renders a line chart from a dataframe using the specified X and Y columns.

Usage hints:

  • Optionally split by a single groupBy column into multiple series.

func NewLinePlotFromPartition

func NewLinePlotFromPartition(
	storage *simulator.StateTimeStorage,
	xRef DataRef,
	yRefs []DataRef,
	fillYRefs []FillLineRef,
) *charts.Line

NewLinePlotFromPartition renders a multi-series line chart from storage using an X reference and one or more Y references.

Usage hints:

  • yRefs may contain multiple series each; one line per series is added.
  • Optional filled bands can be added via fillYRefs.

func NewPosteriorEstimationPartitions

func NewPosteriorEstimationPartitions(
	applied AppliedPosteriorEstimation,
	storage *simulator.StateTimeStorage,
) []*simulator.PartitionConfig

NewPosteriorEstimationPartitions creates a set of PartitionConfigs for an online posterior estimation process using rolling statistics.

func NewScatterPlotFromDataFrame

func NewScatterPlotFromDataFrame(
	df *dataframe.DataFrame,
	xAxis string,
	yAxis string,
	groupBy ...string,
) *charts.Scatter

NewScatterPlotFromDataFrame renders a scatter plot using columns of a dataframe.

Usage hints:

  • Optionally provide a single groupBy column to split series.

func NewScatterPlotFromPartition

func NewScatterPlotFromPartition(
	storage *simulator.StateTimeStorage,
	xRef DataRef,
	yRefs []DataRef,
) *charts.Scatter

NewScatterPlotFromPartition renders a scatter plot from storage-backed DataRef axes.

Usage hints:

  • X-axis must reference a single series (typically time).
  • Each DataRef in yRefs may contain multiple series; a series is added for each.

func NewStateTimeStorageFromCsv

func NewStateTimeStorageFromCsv(
	filePath string,
	timeColumn int,
	stateColumnsByPartition map[string][]int,
	skipHeaderRow bool,
) (*simulator.StateTimeStorage, error)

NewStateTimeStorageFromCsv creates a StateTimeStorage from CSV data.

This function reads time series data from a CSV file and organizes it into partitions for use in stochadex simulations. It supports multiple partitions with different column configurations.

Parameters:

  • filePath: Path to the CSV file to read (must exist and be readable)
  • timeColumn: Index of the column containing timestamps (0-based indexing)
  • stateColumnsByPartition: Map of partition names to column indices for their state values
  • skipHeaderRow: Whether to skip the first row as headers (recommended for CSV files with headers)

Returns:

  • *StateTimeStorage: Storage containing the loaded time series data, organized by partition
  • error: Any error encountered during file reading or parsing

CSV Format Requirements:

  • Time column must contain parseable float64 values
  • State columns must contain parseable float64 values
  • All rows must have the same number of columns
  • Missing or malformed values will cause parsing errors

Example:

// Load data from a CSV with time in column 0, prices in columns 1-2, volumes in column 3
storage, err := NewStateTimeStorageFromCsv(
    "market_data.csv",
    0, // time in first column
    map[string][]int{
        "prices": {1, 2}, // prices partition uses columns 1 and 2
        "volumes": {3},   // volumes partition uses column 3
    },
    true, // skip header row
)
if err != nil {
    log.Fatal("Failed to load CSV data:", err)
}

Error Handling:

  • File not found: Returns error with file path
  • CSV parsing errors: Returns error with parsing details
  • Invalid numeric values: Returns error with conversion details
  • Inconsistent row lengths: Returns error with row information

Performance Notes:

  • Loads entire file into memory (consider file size for large datasets)
  • O(n) time complexity where n is the number of rows
  • Memory usage: O(n * m) where m is the total number of state columns

func NewStateTimeStorageFromJsonLogEntries

func NewStateTimeStorageFromJsonLogEntries(
	filename string,
) (*simulator.StateTimeStorage, error)

NewStateTimeStorageFromJsonLogEntries reads a file up to a given number of iterations into a simulator.StateTimeStorage struct.

func NewStateTimeStorageFromPartitions

func NewStateTimeStorageFromPartitions(
	partitions []*simulator.PartitionConfig,
	termination simulator.TerminationCondition,
	timestep simulator.TimestepFunction,
	initTime float64,
) *simulator.StateTimeStorage

NewStateTimeStorageFromPartitions generates a new simulator.StateTimeStorage by running a simulation with the specified partitions configured.

func NewStateTimeStorageFromPostgresDb

func NewStateTimeStorageFromPostgresDb(
	db *PostgresDb,
	partitionNames []string,
	startTime float64,
	endTime float64,
) (*simulator.StateTimeStorage, error)

NewStateTimeStorageFromPostgresDb reads from a PostgreSQL database over a pre-defined time interval into a simulator.StateTimeStorage struct.

func NewVectorCovariancePartition

func NewVectorCovariancePartition(
	mean DataRef,
	applied AppliedAggregation,
	storage *simulator.StateTimeStorage,
) *simulator.PartitionConfig

NewVectorCovariancePartition constructs a PartitionConfig that computes the rolling windowed weighted covariance matrix of the referenced data values. Provide the corresponding rolling mean via the mean DataRef.

func NewVectorMeanPartition

func NewVectorMeanPartition(
	applied AppliedAggregation,
	storage *simulator.StateTimeStorage,
) *simulator.PartitionConfig

NewVectorMeanPartition creates a partition that computes rolling weighted means for each dimension of the referenced data.

This function creates a partition that maintains running weighted averages over historical data using the specified integration kernel for time weighting. Each dimension of the source data is aggregated independently.

Mathematical Concept: Vector mean aggregation computes:

μ_i(t) = Σ w(t-s) * X_i(s) / Σ w(t-s)

where μ_i(t) is the mean for dimension i at time t, w(t-s) is the kernel weight, and X_i(s) is the value of dimension i at historical time s.

Parameters:

  • applied: AppliedAggregation specifying source data, kernel, and output name
  • storage: StateTimeStorage containing the source data

Returns:

  • *PartitionConfig: Partition that outputs rolling weighted means

Example:

// Compute exponentially weighted moving averages of price data
meanPartition := NewVectorMeanPartition(
    AppliedAggregation{
        Name: "price_ema",
        Data: DataRef{
            PartitionName: "prices",
            ValueIndices: []int{0, 1, 2}, // Use first 3 price dimensions
        },
        Kernel: &kernels.ExponentialIntegrationKernel{},
        DefaultValue: 100.0, // Initial price assumption
    },
    priceStorage,
)

Performance:

  • O(d * h) time complexity where d is data dimensions, h is history depth
  • Memory usage: O(d) for output state
  • Efficient for moderate dimensions (< 100)

func NewVectorVariancePartition

func NewVectorVariancePartition(
	mean DataRef,
	applied AppliedAggregation,
	storage *simulator.StateTimeStorage,
) *simulator.PartitionConfig

NewVectorVariancePartition constructs a PartitionConfig that computes the rolling windowed weighted variance per-index of the referenced data values. Provide the corresponding rolling mean via the mean DataRef.

func SetPartitionFromDataFrame

func SetPartitionFromDataFrame(
	storage *simulator.StateTimeStorage,
	partitionName string,
	df dataframe.DataFrame,
	overwriteTime bool,
)

SetPartitionFromDataFrame updates a partition's values from a Gota dataframe with schema [time, 0, 1, ...]. If overwriteTime is true, the storage's time vector is replaced with the "time" column.

func WriteStateTimeStorageToPostgresDb

func WriteStateTimeStorageToPostgresDb(
	db *PostgresDb,
	storage *simulator.StateTimeStorage,
)

WriteStateTimeStorageToPostgresDb writes all of the data in the state time storage to a PostgreSQL database.

Types

type AppliedAggregation

type AppliedAggregation struct {
	Name         string
	Data         DataRef
	Kernel       kernels.IntegrationKernel
	DefaultValue float64
}

AppliedAggregation describes how to aggregate a referenced dataset over time using customizable weighting kernels.

This struct configures the aggregation process by specifying the source data, output partition name, weighting scheme, and handling of insufficient history. It serves as a blueprint for creating aggregation partitions in simulations.

Mathematical Concept: Aggregations compute weighted averages over historical data:

A(t) = Σ w(t-s) * f(X(s)) / Σ w(t-s)

where w(t-s) is the kernel weight, f(X(s)) is the source data, and the sum is over all historical samples s ≤ t.

Fields:

  • Name: Output partition name for the aggregated results
  • Data: Reference to the source data partition and value indices
  • Kernel: Integration kernel for time-based weighting (nil = instantaneous)
  • DefaultValue: Fill value when insufficient history is available

Related Types:

  • See kernels.IntegrationKernel for available weighting schemes
  • See DataRef for source data configuration
  • See NewGroupedAggregationPartition for grouped aggregations

Example:

aggregation := AppliedAggregation{
    Name: "rolling_mean",
    Data: DataRef{
        PartitionName: "prices",
        ValueIndices: []int{0, 1}, // Use first two price columns
    },
    Kernel: &kernels.ExponentialIntegrationKernel{},
    DefaultValue: 0.0,
}

func (*AppliedAggregation) GetKernel

GetKernel returns the configured integration kernel with automatic fallback.

This method ensures that callers never need to handle nil kernels by providing a sensible default. The instantaneous kernel applies no time weighting, effectively using only the most recent value for aggregation.

Returns:

  • kernels.IntegrationKernel: The configured kernel, or InstantaneousIntegrationKernel if nil

Usage:

kernel := aggregation.GetKernel()
// Safe to use kernel without nil checks

Performance:

  • O(1) time complexity
  • No memory allocation for cached kernels

type AppliedEvolutionStrategyOptimisation

type AppliedEvolutionStrategyOptimisation struct {
	Sampler    EvolutionStrategySampler
	Sorting    EvolutionStrategySorting
	Mean       EvolutionStrategyMean
	Covariance EvolutionStrategyCovariance
	Reward     EvolutionStrategyReward
	Window     WindowedPartitions
	Seed       uint64
}

AppliedEvolutionStrategyOptimisation is the base configuration for an online evolution strategies optimisation of discounted future returns calculated by an embedded simulation.

type AppliedGrouping

type AppliedGrouping struct {
	GroupBy   []DataRef
	Precision int
}

AppliedGrouping configures a grouping transformation on data.

type AppliedLikelihoodComparison

type AppliedLikelihoodComparison struct {
	Name   string
	Model  ParameterisedModel
	Data   DataRef
	Window WindowedPartitions
}

AppliedLikelihoodComparison configures a rolling likelihood comparison between referenced data and a model over a sliding window.

type AppliedLikelihoodMeanFunctionFit

type AppliedLikelihoodMeanFunctionFit struct {
	Name              string
	Model             ParameterisedModelWithGradient
	Gradient          LikelihoodMeanGradient
	Data              DataRef
	Window            WindowedPartitions
	LearningRate      float64
	DescentIterations int
}

AppliedLikelihoodMeanFunctionFit configures online fitting of the model's likelihood mean to data using a gradient function and learning rate over a finite descent schedule.

type AppliedPosteriorEstimation

type AppliedPosteriorEstimation struct {
	LogNorm      PosteriorLogNorm
	Mean         PosteriorMean
	Covariance   PosteriorCovariance
	Sampler      PosteriorSampler
	Comparison   AppliedLikelihoodComparison
	PastDiscount float64
	MemoryDepth  int
	Seed         uint64
}

AppliedPosteriorEstimation is the base configuration for an online inference of a simulation (specified by partition configs) from a referenced dataset.

type ColourGenerator

type ColourGenerator struct {
	// contains filtered or unexported fields
}

ColourGenerator iterates over the default ECharts categorical palette.

func (*ColourGenerator) Next

func (cg *ColourGenerator) Next() string

Next returns the next colour in the ECharts palette, cycling when the end is reached.

type DataPlotting

type DataPlotting struct {
	IsTime    bool
	TimeRange *IndexRange
}

DataPlotting declares optional transformations for plotting, such as treating a reference as time and restricting to a time index range.

type DataRef

type DataRef struct {
	PartitionName string
	ValueIndices  []int
	Plotting      *DataPlotting
}

DataRef identifies a subset of data stored in StateTimeStorage. It can reference the special time axis or one or more value indices of a partition. Optional plotting hints may be supplied via Plotting.

func (*DataRef) GetFromStorage

func (d *DataRef) GetFromStorage(
	storage *simulator.StateTimeStorage,
) [][]float64

GetFromStorage returns the entire referenced series. For a time reference, this is a single series containing all times; for a value reference, this is one series per value index.

func (*DataRef) GetSeriesNames

func (d *DataRef) GetSeriesNames(
	storage *simulator.StateTimeStorage,
) []string

GetSeriesNames returns human-readable series labels for plotting. Time references are labeled "time"; value references are labeled as "<partition> <index>".

func (*DataRef) GetTimeIndexFromStorage

func (d *DataRef) GetTimeIndexFromStorage(
	storage *simulator.StateTimeStorage,
	timeIndex int,
) []float64

GetTimeIndexFromStorage returns the data at a specific time index. For a time reference, this is a single-element slice containing the time value; for a value reference, this is the row slice for that time index.

func (*DataRef) GetValueIndices

func (d *DataRef) GetValueIndices(
	storage *simulator.StateTimeStorage,
) []int

GetValueIndices returns the referenced value indices, defaulting to all indices within the partition when ValueIndices is nil.

type EvolutionStrategyCovariance

type EvolutionStrategyCovariance struct {
	Name         string
	Default      []float64
	LearningRate float64
}

EvolutionStrategyCovariance defines the configuration needed to specify the covariance update in the AppliedEvolutionStrategyOptimisation.

type EvolutionStrategyMean

type EvolutionStrategyMean struct {
	Name         string
	Default      []float64
	Weights      []float64
	LearningRate float64
}

EvolutionStrategyMean defines the configuration needed to specify the mean update in the AppliedEvolutionStrategyOptimisation.

type EvolutionStrategyReward

type EvolutionStrategyReward struct {
	Partition      WindowedPartition
	DiscountFactor float64
}

EvolutionStrategyReward defines the per-step reward iteration to be wrapped with discounted cumulative accumulation inside the embedded simulation.

type EvolutionStrategySampler

type EvolutionStrategySampler struct {
	Name    string
	Default []float64
}

EvolutionStrategySampler defines the configuration needed to specify the sampling distribution in the AppliedEvolutionStrategyOptimisation.

type EvolutionStrategySorting

type EvolutionStrategySorting struct {
	Name           string
	CollectionSize int
	EmptyValue     float64
}

EvolutionStrategySorting defines the configuration needed to specify the sorted collection in the AppliedEvolutionStrategyOptimisation.

type FillLineRef

type FillLineRef struct {
	Upper DataRef
	Lower DataRef
}

FillLineRef specifies an upper and lower bound series used to fill a confidence region in a line plot.

type GroupedStateTimeStorage

type GroupedStateTimeStorage struct {
	Storage *simulator.StateTimeStorage
	// contains filtered or unexported fields
}

GroupedStateTimeStorage is a representation of simulator.StateTimeStorage which has already had a grouping transformation applied to it.

func NewGroupedStateTimeStorage

func NewGroupedStateTimeStorage(
	applied AppliedGrouping,
	storage *simulator.StateTimeStorage,
) *GroupedStateTimeStorage

NewGroupedStateTimeStorage creates a new GroupedStateTimeStorage given the provided simulator.StateTimeStorage and applied grouping.

func (*GroupedStateTimeStorage) GetAcceptedValueGroupLabels

func (g *GroupedStateTimeStorage) GetAcceptedValueGroupLabels() []string

GetAcceptedValueGroupLabels returns the unique group labels that were found in the data which are typically used for labelling plots.

func (*GroupedStateTimeStorage) GetAcceptedValueGroups

func (g *GroupedStateTimeStorage) GetAcceptedValueGroups(tupIndex int) []float64

GetAcceptedValueGroups returns the unique groups that were found in the data which are typically used to configure group aggregation partitions.

func (*GroupedStateTimeStorage) GetAcceptedValueGroupsLength

func (g *GroupedStateTimeStorage) GetAcceptedValueGroupsLength() int

GetAcceptedValueGroupsLength returns the number of accepted value groups (equivalent to the length of the state vector in simulation partition).

func (*GroupedStateTimeStorage) GetGroupTupleLength

func (g *GroupedStateTimeStorage) GetGroupTupleLength() int

GetGroupTupleLength returns the length of tuple in the grouping index construction.

func (*GroupedStateTimeStorage) GetGroupingPartition

func (g *GroupedStateTimeStorage) GetGroupingPartition(tupIndex int) string

GetGroupingPartitions returns the partition used in the data for grouping.

func (*GroupedStateTimeStorage) GetGroupingValueIndices

func (g *GroupedStateTimeStorage) GetGroupingValueIndices(tupIndex int) []float64

GetGroupingValueIndices returns the value indices used in the data for grouping.

func (*GroupedStateTimeStorage) GetPrecision

func (g *GroupedStateTimeStorage) GetPrecision() int

GetPrecision returns the requested float precision for grouping.

type IndexRange

type IndexRange struct {
	Lower int
	Upper int
}

IndexRange represents an inclusive-exclusive [Lower, Upper) span of indices. It is commonly used to clip time-series windows for plotting.

type LikelihoodMeanGradient

type LikelihoodMeanGradient struct {
	Function func(
		params *simulator.Params,
		likeMeanGrad []float64,
	) []float64
	Width int
}

LikelihoodMeanGradient specifies a function mapping params and the gradient of the likelihood mean to a parameter update direction.

type ParameterisedModel

type ParameterisedModel struct {
	Likelihood         inference.LikelihoodDistribution
	Params             simulator.Params
	ParamsAsPartitions map[string][]string
	ParamsFromUpstream map[string]simulator.NamedUpstreamConfig
}

ParameterisedModel bundles a likelihood distribution with its parameter configuration and any cross-partition parameter wiring required at runtime.

func (*ParameterisedModel) Init

func (p *ParameterisedModel) Init()

Init ensures internal parameter wiring maps are initialised.

type ParameterisedModelWithGradient

type ParameterisedModelWithGradient struct {
	Likelihood         inference.LikelihoodDistributionWithGradient
	Params             simulator.Params
	ParamsAsPartitions map[string][]string
	ParamsFromUpstream map[string]simulator.NamedUpstreamConfig
}

ParameterisedModelWithGradient augments ParameterisedModel with gradient support for optimisation routines.

func (*ParameterisedModelWithGradient) Init

Init ensures internal parameter wiring maps are initialised.

type PosteriorCovariance

type PosteriorCovariance struct {
	Name         string
	Default      []float64
	JustVariance bool
}

PosteriorCovariance defines the configuration needed to specify the posterior covariance in the AppliedPosteriorEstimation.

type PosteriorLogNorm

type PosteriorLogNorm struct {
	Name    string
	Default float64
}

PosteriorLogNorm defines the configuration needed to specify the posterior log-normalisation in the AppliedPosteriorEstimation.

type PosteriorMean

type PosteriorMean struct {
	Name    string
	Default []float64
}

PosteriorMean defines the configuration needed to specify the posterior mean in the AppliedPosteriorEstimation.

type PosteriorSampler

type PosteriorSampler struct {
	Name         string
	Default      []float64
	Distribution ParameterisedModel
}

PosteriorSampler defines the configuration needed to specify the posterior sampler in the AppliedPosteriorEstimation.

type PostgresDb

type PostgresDb struct {
	User      string
	Password  string
	Dbname    string
	TableName string
	// contains filtered or unexported fields
}

PostgresDb is a struct which can be configured to define interactions with a PostgresSQL database.

func (*PostgresDb) OpenTableConnection

func (p *PostgresDb) OpenTableConnection() error

OpenTableConnection connects to the PostgreSQL database or creates it if it doesn't exist.

func (*PostgresDb) ReadStateInRange

func (p *PostgresDb) ReadStateInRange(
	partitionName string,
	startTime float64,
	endTime float64,
) (*sql.Rows, error)

ReadStateInRange retrieves all entries between a specified start and end time range for a given partition.

func (*PostgresDb) WriteState

func (p *PostgresDb) WriteState(
	partitionName string,
	time float64,
	state []float64,
) error

WriteState writes a new partition state value to the database.

type PostgresDbOutputFunction

type PostgresDbOutputFunction struct {
	// contains filtered or unexported fields
}

PostgresDbOutputFunction writes the data from the simulation to a PostgresSQL database when the simulator.OutputCondition is met.

func NewPostgresDbOutputFunction

func NewPostgresDbOutputFunction(
	db *PostgresDb,
) *PostgresDbOutputFunction

NewPostgresDbOutputFunction creates a new PostgresDbOutputFunction.

func (*PostgresDbOutputFunction) Output

func (p *PostgresDbOutputFunction) Output(
	partitionName string,
	state []float64,
	cumulativeTimesteps float64,
)

type WindowedPartition

type WindowedPartition struct {
	Partition        *simulator.PartitionConfig
	OutsideUpstreams map[string]simulator.NamedUpstreamConfig
}

WindowedPartition configures a partition that participates in a finite windowed simulation.

Usage hints:

  • Partition defines the inner partition and its params.
  • OutsideUpstreams map allows wiring upstreams from outside the window.

type WindowedPartitions

type WindowedPartitions struct {
	Partitions []WindowedPartition
	Data       []DataRef
	Depth      int
}

WindowedPartitions defines the sliding-window context used by analysis.

Usage hints:

  • Partitions are simulated inside the window.
  • Data references supply historical values to seed and drive the window.
  • Depth is the number of steps in the window.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL